Senin, 11 Oktober 2010

Tugas Organisasi & Arsistektur Komputer


STRUKTUR KOMPUTER
1.      Register-register internal CPU:
Memory Buffer Register (MBR) atau Memory Data Register (MDR) :
berisi sebuah word yang akan disimpan di dalam memori, atau digunakan
untuk menerima word dari memori.
2.      Memory Address Register (MAR) : menentukan alamat di memori yang
isinya akan diambil ke MBR atau  yang akan diisi dengan data yang
terdapat di MBR.
3.      Instruction Register (IR) : tempat menampung instruksi yang akan
dieksekusi.
4.      Program Counter (PC) : menyimpan alamat instruksi berikutnya yang
akan diambil dari memori.
5.      Accumulator : digunakan untuk menyimpan sementara operand dan hasil
operasi ALU.

Data Fungsi Komputer
1.      Fungsi dasar yang dibentuk komputer adalah eksekusi program.
2.      Program yang akan dieksekusi terdiri dari instruksi-instruksi yang
tersimpan di dalam memori.
3.       Proses eksekusi instruksi terdiri dari 2 langkah :
4.      Pengambilan instruksi dari memori ke CPU (siklus pengambilan).  Proses eksekusi instruksi di CPU (siklus eksekusi).
5.      Eksekusi program merupakan perulangan siklus pengambilan dan siklus
eksekusi.

Siklus Instruksi Dasar
1.      Eksekusi program akan terhenti apabila komputer dimatikan, terjadi
kesalahan, atau terdapat instruksi yang menghentikan komputer.
2.      Mengambil instruksi berikutnya Eksekusi instruksi Siklus Pengambilan (Fetch Cycle) & Siklus Eksekusi (Execute Cycle)
3.      Pada awal setiap siklus instruksi, CPU membaca instruksi dari memori.
4.      Sebuah register yang disebut Program Counter (PC) digunakan untuk
menunjukkan alamat instruksi yang akan diambil dari memori.
5.      Setiap kali sebuah instruksi dibaca, isi PC akan ditambah sehingga CPU
akan membaca instruksi selanjutnya secara berurutan.
6.      Instruksi yang dibaca akan dimuatkan ke sebuah register di dalam CPU
yang disebut Instruction register (IR).
7.      Selanjutnya CPU menginterpretasikan instruksi dan melakukan aksi yang
diperlukan.

Register internal CPU :
·         Program Counter (PC) = menyimpan alamat instruksi
·         Instruction Register (IR) = menampung instruksi yang sedang
dieksekusi
·         Accumulator (AC) = register penyimpanan temporer

Kode atau instruksi :
·         0001   = Isi memori, yang alamatnya dinyatakan pada bit 4 sampai bit
15 pada format instruksi, disalinkan ke Accumulator.
·         0010 = Simpan isi accumulator  ke memori, yang alamatnya
dinyatakan pada bit 4 sampai bit 15.
·         0101 =Tambahkan isi AC dengan  isi memori, yang alamatnya
dinyatakan pada bit 4 sampai bit 15.

Kumpulan register :
·         9  Memory Buffer Register (MBR)
·         9  Memory Address Register (MAR)
·         9  Instruction Register (IR)
·         9  Instruction Buffer Register (IBR): digunakan untuk menyimpan
sementara instruksi sebelah kanan word di dalam memori.
·         9  Program Counter (PC)
·         9  Accumulator dan Multiplier -Ouotient (MQ) : digunakan untuk
menyimpan sementara operand dan hasil operasi ALU.

Pada IAS, setiap siklus instruksi terdiri dari dua subsiklus. Selama siklus
pengambilan, op code instruksi berikutnya dimuatkan ke IR dan alamat
dimuatkan ke MAR. Instruksi ini   dapat diambil dari IBR atau dapat
diperoleh dari memori dengan cara memuatkan sebuah word ke dalam
MBR, dan kemudian diturunkan ke IBR, IR dan MAR.

KOMPONEN UTAMA CPU

- Arithmetic and Logic Unit (ALU)
- Control Unit (CU)
- Registers
- CPU Interconnections
Arithmetic and Logic Unit
  • Bertugas membentuk fungsi-fungsi pengolahan data komputer.
  • Arithmetic Logic Unit sering disebut dengan bahasa mesin (machine language) karena bagian ini mengerkjakan instruksi-instruksi bahasa mesin yang diberikan kepadanya.
  • Arithmetic Logic Unit terdiri dari dua bagian yaitu unit arithmetic dan unit logika Boolean yang masing-masing memiliki spesifikasi tugas tersendiri.
Control Unit [CU]
  • Bertugas mengontrol operasi CPU dan secara keseluruhan mengontrol komputer sehingga terjadi sinkronisasi kerja antar komponen dalam menjalankan fungsi-fungsi operasinya.
  • Termasuk dalam tanggung jawab unit kontrol adalah mengambil instruksi-intstruksi dari memori utama dan menentukan jenis instruksi tersebut.
Registers [Top Level Memory]
  • Media penyimpanan internal CPU yang digunakan saat proses pengolahan data.
  • Memori ini bersifat sementara, biasanya digunakan untuk menyimpan data saat diolah ataupun data untuk pengolahan selanjutnya.
CPU Interconnections
  • Sistem koneksi dan bus yang menghubungkan komponen internal dan bus-bus eksternal CPU.
  • Komponen internal CPU yaitu ALU, unit kontrol dan register-register.
  • Komponen eksternal CPU : sistem lainnya, seperti memori utama, piranti masukan dan keluaran.

KOMPONEN INTERNAL CONTROL PROCESSING UNIT [CPU]

Fungsi CPU
  • Menjalankan program-program yang disimpan dalam memori utama dengan cara mengambil instruksi-instruksi, menguji instruksi tersebut dan mengeksekusinya satu persatu sesuai alur perintah.
  • Pandangan paling sederhana proses eksekusi program adalah dengan mengambil pengolahan instruksi yang terdiri dari dua langkah, yaitu : operasi pembacaan instruksi (fetch) dan operasi pelaksanaan instruksi (execute).
I/O Interrupt
Untuk memulai mengoperasikan I/O,  CPU memanggil register-register yang cocok untuk device controller. Kemudian device controller menjawab dengan mengisi register-register berupa tanggapan yang akan diberikan. Sebagai contoh, jika ada permintaan transfer data dari suatu device ke local buffer, dan transfer telah selesai didlakukan, maka device controller menginformasikan ke CPU bahwa pekerjaan tersebut telah selesai. Komunikasi ini akan menyebabkan terjadinya interrupt

Struktur DMA
Transfer data dari buffer ke memori atau sebaliknya dilakukan per-karakter, dimana setiap kali transfer selalu ada interrupt dari CPU sebelum dan sesudah transfer. Jika waktu untuk mentransfer satu karakter sebesar 2 µs dan sekali interrupt butuh 1 ms, maka untuk mentransfer data dari memori ke buffer butuh 4 µs per karakter. Untuk mempersingkat waktu, digunakan DMA (Direct Memory Access). Dengan menggunakanDMA transfer data dapat dilakukan secara langsung oleh device controller per-blok tanpa ada campur tangan dari CPU. CPU hanya memberikan interrupt sebelum dan sesudah transfer setiap blok.
Keuntungan menggunakan mode DMA amat terasa pada sistem operasi multitasking seperti UNIX, karena transfer data dengan mode DMA akan menghemat resource CPU sehingga CPU dapat mengerjakan pekerjaan lain. Pada sistem operasi singletasking, seperti DOS, CPU harus menunggu sehingga transfer data selesai terlebih dahulu baru bisa melanjutkan pekerjaan yang lainnya.
Ada dua jenis DMA, yaitu:
  1. Third-party DMA, menggunakan DMA controller yang ada pada motherboard untuk melakukan operasi transfer data.
  2. First-party DMA (busmastering DMA), untuk melakukan operasi transfer data dikerjakan oleh bagian logic di interface card.



Sabtu, 09 Oktober 2010

Sejarah Evolusi Komputer


Pengertian Komputer
    
     Komputer adalah alat yang dipakai untuk mengolah data menurut prosedur yang telah dirumuskan. Kata computer semula dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmatika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmatika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
Komputer dapat didefinisikan sebagai suatu peralatan elektronik yang terdiri dari beberapa komponen, yang dapat bekerja sama antara komponen satu dengan yang lain untuk menghasilkan suatu informasi berdasarkan program dan data yang ada. Adapun komponen komputer adalah meliputi : Layar Monitor, CPU, Keyboard, Mouse dan Printer.
Dalam definisi seperti itu terdapat alat seperti slide rule, jenis kalkulator mekanik mulai dari abakus dan seterusnya, sampai semua komputer elektronik yang kontemporer. Istilah lebih baik yang cocok untuk arti luas seperti "komputer" adalah "yang memproses informasi" atau "sistem pengolah informasi."
Saat ini, komputer sudah semakin canggih. Tetapi, sebelumnya komputer tidak sekecil, secanggih, sekeren dan seringan sekarang. Dalam sejarah komputer, ada 5 generasi dalam sejarah computer

Generasi Komputer

Generasi Pertama
     Dengan terjadinya Perang Dunia Kedua, negara-negara yang terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploit potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknik komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer, Z3, untuk mendesain pesawat terbang dan peluru kendali.
Pihak sekutu juga membuat kemajuan lain dalam pengembangan kekuatan komputer. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode rahasia yang digunakan Jerman. Dampak pembuatan Colossus tidak terlalu mempengaruhi perkembangan industri komputer dikarenakan dua alasan. Pertama, Colossus bukan merupakan komputer serbaguna(general-purpose computer), ia hanya didesain untuk memecahkan kode rahasia. Kedua, keberadaan mesin ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Usaha yang dilakukan oleh pihak Amerika pada saat itu menghasilkan suatu kemajuan lain. Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvard-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Perkembangan komputer lain pada masa kini adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania. Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW.
Komputer ini dirancang oleh John Presper Eckert (1919-1995) dan John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.
Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usaha membangun konsep desain komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer. Von Neumann mendesain Electronic Discrete Variable Automatic Computer (EDVAC) pada tahun 1945 dengan sebuah memori untuk menampung baik program ataupun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur Von Neumann tersebut.
Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode biner yang berbeda yang disebut "bahasa mesin" (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dan silinder magnetik untuk penyimpanan data.

Generasi Kedua
     Pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis.
Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya. Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputer-komputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya. Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singakatan untuk menggantikan kode biner.
Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program.
Salah satu contoh penting komputer pada masa ini adalah 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memprosesinformasi keuangan.
Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji. Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karier baru bermunculan (programmer, analis sistem, dan ahli sistem komputer). Industr piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.

Generasi Ketiga
     Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC : integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Pada ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponen-komponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.

Generasi Keempat
     Setelah IC, tujuan pengembangan menjadi lebih jelas: mengecilkan ukuran sirkuit dan komponen-komponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.
Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukurang setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan keterandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap piranti rumah tangga seperti microwave, oven, televisi, dan mobil dengan electronic fuel injection (EFI) dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.
Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat.
Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensial terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputer-komputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Jaringan komputer memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga Local Area Network atau LAN), atau [kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.

Generasi Kelima
     Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001: Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence atau AI), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapa komputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhana. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertian manusia sangat bergantung pada konteks dan pengertian ketimbang sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang desain komputer dan teknologi yang semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model non Neumann. Model non Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia.